Appendix A. Methods for Measuring Particles | Table A-1. | Summary of Collection Methods For Gaseous Pollutants and Particulates in Air | |------------|--| | Table A-2. | Summary of Collection Methods for Metals in Air A-14 | | Table A-3. | Summary of Collection Methods for Volatile Organics in Air | Table A-1. Summary of Collection Methods For Gaseous Pollutants and Particulates in Air | Contaminant | Method Type | Type of Measurement Continuous Intermittent Integrated | Type of Sampler Passive Active | Collection Method filter sorbent denuder | Sampling Device | Analytical Method | Range of
Quantification
(or detection) | |-------------------------------------|---|--|--------------------------------|--|---|---|--| | Carbon monoxide (CO) | Gas Filter Correlation
Ambient CO Analyzer | Continuous | Active | Air is drawn into the
monitoring system
(instruments
commercialized) | Monitoring system (1 L/min) | Sampled CO is
measured by IR
(infrared radiation at
4.6 µm) | 0.1 - 100 ppm | | | Personal Air Control
(Pac III) | Continuous/Integrated | Active | _ | User installable »plug
and play«
electrochemical Dräger
Sensors | _ | | | | Tedlar bags, GC, reduction gas detector | Integrated | Active | Air is collected into
Tedlar bags using
pumps | Tedlar bags, pumps | Air samples are
separated and CO is
detected with a
reduction gas detector
(HgO to Hg vapor by
CO) | 0.30 ppm - | | | Activated charcoal tube, color change | Integrated | Active | Air is pumped thru activated charcoal tubes | Tubes | Color change when CO is present | | | | Solid adsorbent,
GC/FID | Integrated | Passive | Air is diffused through
diffusion tube onto Zn-
Y-zeolite in the glass
tube | Diffusion tube, glass
tube (Zn-Y zeolite),
stainless steel screen,
rubber septum | CO is thermally
desorbed and then
converted to methane,
which is analyzed by
GC/FID | 30 - 1,600 ppm-h | | | Diffusion type
dosimeter | Integrated | Passive | Diffusion of air into the dosimeter | Purified silica gel
impregnated with a
detecting chemical
(palladium salt) in
passive dosimeter | Length of stain (direct
reading): color change
from very pale yellow
(almost white) to gray | 1 mg/m ³ (0.87 ppm) - | | Nitrogen dioxide (NO ₂) | Personal Air Control
(Pac III) | Continuous/Integrated | Active | _ | User installable »plug
and play«
electrochemical Dräger
Sensors | _ | | | | Sodium arsenite, colorimetry | Integrated | Active | Air passes through a
solution of basic
(NaOH) sodium
arsenite | Standard impingers
containing basic
sodium arsenite
solution | Add H ₂ O ₂ followed by
sulfanilamide and
NEDA> absorbance
at 540 nm | 0.005 - 0.15 ppm | | | Sodium arsenite, colorimetry, continuous | Continuous | Active | Air passes through a
solution of basic
(NaOH) sodium
arsenite | An orifice bubbler | Add H ₂ O ₂ followed by
sulfanilamide and
NEDA> absorbance
at 540 nm | 0.005 - 0.15 ppm | | | Table A-1. | Summar | y of Collection Methods For Gaseous Pollutants and Particulates in Air (co | ontinued) | |--|------------|--------|--|-----------| |--|------------|--------|--|-----------| | Contaminant | Method Type | Type of
Measurement | Sampler
Tyoe | Collection Method | Sampling Device | Analytical Method | Range of
Quantification
(or detection) | |-------------|---|------------------------|-----------------|---|---|--|--| | | Chemiluminescence
after conversion of NO ₂
to NO | Continuous | Active | Monitoring system
(instruments
commercialized) | Monitoring system | NO ₂ to NO, which is
measured by
chemiluminescence | 0.25 (0.005 ppm -
MDL) - 25 ppm | | | UV differential optical absorption spectrometry (DOAS) | Continuous | _ | Light (laser) passes
through the air (3 to
1000 m) | Direct reading | Light intensity is proportional to the concentration of NO ₂ | 0.004 - 0.5 ppm | | | TGS-ANSA Method | Integrated | Active | Ambient air is bubbled with an orifice bubbler | An orifice bubbler, a solution of TEA, guaiacol, and sodium metabisulfite (TGS) | NO ₂ is reduced to NO,
which then reacted with
sulfanilamide and 8-
amino-1-naphthalene-
sulfonic acid
ammonium salt
(ANSA) | 0.008 - 0.15 ppm | | | Triethanolamine
(TEA)-impregnated
molecular sieve, IC | Integrated | Active | Air is drawn into a
sampling tube
containing TEA-
impregnated molecular
sieve | Sampling tube, a calibrated pump (0.2 L/min) | The sample is desorbed using 1.5% TEA solution. NO ₂ is analyzed by IC | 0.19 ppm (3-L air) - | | | Palmes-type diffusion tube, spectrophotometry | Integrated | Passive | NO ₂ is absorbed into
three screens coated
with triethanolamine
(TEA)> TEA-NO ₂
complex | Palmes diffusion tube
(acrylic tube), 3
screens, fixed cap,
flanged (removable)
cap | Color development by a color reagent (sulfanilamide + NEDA)> absorbance at 540 nm | $0.01 \mu g \text{ NO}_2 \text{ per}$ sample (0.150 ppm-h) | | | Ferm badge, FIA | Integrated | Passive | A mixture of iodide,
arsenite and ethylene
glycol | Badge type - a filter
impregnated with a
mixture of three
chemicals, a wind
shielded inlet | Spectrophotometry
(flow injection analysis,
FIA) | 0.05 - 200 ppm | | | Ogawa badge, TEA, IC | Integrated | Passive | NO ₂ forms a complex
with TEA (glass fiber
filter) | A glass fiber filter impregnated with TEA, a protective cage | IC (suppressed) | N/A | | | CSPSS badge,
CHEMIX TM ,
spectrophotometry or
CFA | Integrated | Passive | NO ₂ forms a complex with TEA (CHEMIX TM) | Teflon film (diffusion barrier), CHEMIX TM (collection medium), two polyester screens, sampler body) | Spectrophotometry,
CFA or (IC) | 0.0001 - 0.050 ppm (1
month) | Table A-1. Summary of Collection Methods For Gaseous Pollutants and Particulates in Air (continued) | Contaminant | Method Type | Type of
Measurement | Sampler
Tyoe | Collection Method | Sampling Device | Analytical Method | Range of
Quantification
(or detection) | |-------------------------|---|------------------------|-----------------|--|--|--|--| | | Triethanolamine (TEA), IC | Integrated | Passive | Diffusion onto a TEA-
coated filter | A badge type (25 mm * 10 mm), Whatman 1
Chr filter paper (or two SS screens impregnated with TEA) | NO ₂ is extracted with
deionized water and the
extract is analyzed by
IC | 0.5 μg/m³ (1 month),
15 μg/m³ (24 hr) - | | | Yanagisawa-type
sampler, TEA,
Spectrophotometry | Integrated | Passive | Diffusion onto a TEA-
coated filter | Polyethylene bag (rain
shelter), absorbent
filter, pre-filter | Extracts (with DI
water) are analyzed by
measuring absorbance
at 545 nm (Saltman
reagent) | N/A | | Ozone (O ₃) | Chemiluminescence O ₃ analyzer, ethylene | Continuous | Active | Air is drawn into a reaction cell | A pump, filter, a reaction cell | Measure an analyte by
mixing it with ethylene
with which it reacts to
form light | 0.002 - 0.5 ppm | | | Chemiluminescence O ₃
analyzer, ethylene,
Rhodamine B organic
dye | Continuous | Active | Air is drawn into a reaction cell | A pump, filter, a reaction cell | Measure an analyte by
mixing it with ethylene
with which it reacts to
form light | 0.002 - 0.5 ppm | | | UV Photometry | Continuous | Active | Optical absorption cell
(instruments
commercialized) | Air is continuously
drawn through an
optical absorption cell
(1.5 to 2 L/min) | Drawn air is irradiated
by UV (254 nm) and
absorbance is measured | 0.002 - 1 ppm | | | UV differential optical absorption spectrometry (DOAS) | Continuous | - | Light (laser) passes
through the air (3 to
1000 m) | Direct reading | Light intensity is proportional to the concentration of ozone | 0.0015 - 0.5 ppm | | | Personal sampler using a diffusion denuder | Integrated | Active | Air is drawn into a
diffusion denuder (65
mL/min) | Hollow tube denuder (HTH, 1.4 cm id * 10 cm L)) coated with nitrite | | 0.045 ppm - | | | Active, Impregnated glass fiber filter, IC-UV | Integrated | Active | Two nitrite-
impregnated gloss fiber
filters (NIGFFs) | A two-piece
polystyrene cassette
containing two
NIGFFs. | NO ₃ extracted with DI water and the extracts analyzed by IC-UV (Conduc.) | 0.03
ppm (90-L air) - | | | Bubbler, Vis
spectrophotometry | Integrated | Active | 0.5% 1,2-Di(4-
pyridyl)ethylene (DPE)
in glacial acetic acid | All-glass fritted
bubbler, absorber, an
air pump | Color-developing
reagent (0.2% aq. 3-
methyl-2-
benzothiazolinone
hydrazone HCl, 3-
MBTH), 442 nm | N/A | Table A-1. Summary of Collection Methods For Gaseous Pollutants and Particulates in Air (continued) | Contaminant | Method Type | Type of
Measurement | Sampler
Tyoe | Collection Method | Sampling Device | Analytical Method | Range of
Quantification
(or detection) | |-------------|--|------------------------|-----------------|---|---|---|--| | | Filter in a plastic tube,
Vis spectrophotometry | Integrated | Passive | Glass fiber filter
impregnated with 1,2-
Di(4-pyridyl)ethylene
(DPE), PVC tube | A piece of glass fiber
filter contained in a
PVC tube | Color-developing
reagent (0.2% aq. 3-
methyl-2-
benzothiazolinone
hydrazone HCl, 3-
MBTH), 442 nm | 0.003 mg/m³ (1 wk) - | | | UV spectrophotometry | Integrated | Passive | Gel Blot paper loaded
with Indigo | Can Oxy Plate TM | Isatin is extracted with ethanol and absorbance is determined at 408 nm. | N/A | | | Reflectance
spectroscopy (color
analyzer) | Integrated | Passive | Paper disc coated with
indigo carmine + PTFE
filter (diffusion barrier) | 25 mm diameter
polycarbonate dual
filter | Color change before
and after sampling
measured by
reflectance
spectroscopy (color
analyzer) | 0.03 ppm (24 hr) or
0.001 ppm (1 month) - | | | Diffusion, IC-
Conductivity | Integrated | Passive | Glass fiber filters
coated with NaNO ₂ (c-
HNO ₃ > chromic acid
sulfuric acid> c-HCl
> NaOH) | Ogawa & Co., USA
passive sampler | A reaction product,
nitrate (NO ₃ '), is
extracted with DI water
and the extracts
analyzed by IC-Cond. | 0.017 ppm (12 hr) or
0.008 ppm (24 hr) - | | | Diffusion, IC-UV | Integrated | Passive | Filter coated with
sodium nitrite,
potassium carbonate,
and glycerol | Teflon barrel-shaped
body containing two
coated fiberglass filters
+ a Teflon diffusion
barrier (Ogawa & Co.) | A reaction product,
nitrate (NO ₃), is
extracted with DI water
and the extracts
analyzed by IC-UV | ~ 0.017 - (12 hours) | | | Diffusion, IC-UV | Integrated | Passive | Filter coated with sodium nitrite | Teflon film as a
diffusion barrier +
sampling media (filter) | A reaction product,
nitrate (NO ₃ '), is
extracted with DI water
and the extracts
analyzed by IC-UV | 0.003 - 1 ppm for 1-
day exposure; 0.0001 -
0.14 ppm for 1 month
exp. | | | I ₂ /Nylon-6 charge-
transfer complex,
coulometry | Integrated | Passive | Collector (carbon disk coated with nylon-6, KI, KH ₂ PO ₄ , and CH ₃ COOK), KMnO ₄ glass filter, etc. | Collector, Teflon
membrane, Teflon
spacer, Teflon mesh,
KMnO ₄ glass filter,
Teflon membrane, and
Teflon mesh in series | Coulometry (discharge measurement system) | 0.4 ppm-h - 1.4 ppm-h | | | Rubber cracking | Integrated | Passive | Vulcanized rubber is exposed to air | Vulcanized rubber (mix
with sulfur and heat
above 100°C> highly
elastic) | Image analysis> frequency of cracks of a given length is proportional to ozone conc. | ~0.060 ppm (24 hr) | Table A-1. Summary of Collection Methods For Gaseous Pollutants and Particulates in Air (continued) | Contaminant | Method Type | Type of
Measurement | Sampler
Tyoe | Collection Method | Sampling Device | Analytical Method | Range of
Quantification
(or detection) | |-----------------------------------|---|------------------------|-----------------|---|--|---|---| | | Personal Air Control
(Pac III) | Continuous/Integrated | Active | - | User installable »plug
and play«
electrochemical Dräger
Sensors | _ | | | Sulfur dioxide (SO ₂) | Pararosaniline method,
Spectrophotometry | Integrated | Active | Air is bubbled through
a solution of 0.04 M
potassium
tetrachloromercurate | Glass midget impinger
for short-term (0.5 - 1.0
L/min) | Spectrophotometry (548 nm) - pararosaniline reagent | 25 µg/m³ (0.01 ppm) -
1,130 µg/m³ (0.43
ppm) for short-term
sampling | | | | | | | Polypropylene (PP)
tube for long-term
(0.18 - 0.22 L/min) | | 13 $\mu g/m^3$ (0.005 ppm) - 590 μ/m^3 (0.23 ppm) for long-term sampling | | | UV Fluorescent SO ₂ analyzer | Continuous | Active | Air is drawn onto 5 to
10 μm PTFE filter
(instruments
commercialized) | 2.5 L/min, filter assembly | Automated, fluorescent detector | 0.0004 - 1.0 ppm | | | UV differential optical absorption spectrometry (DOAS) | Continuous | _ | Long path
measurements (3 to
1000 m) | - | Light intensity is proportional to the concentration of NO ₂ | 0 - 0.5 ppm or 0 to 1.0 ppm | | | Gas wash bottle method (H ₂ O ₂ , IC) | Integrated | Active | Air is drawn through a gas wash bottle containing an acidified H ₂ O ₂ solution | A pump (1.1 L/min), an inverted funnel, polypropylene tubing, a cellulose filter, a gas wash bottle | SO ₂ is converted to
H ₂ SO ₄ by H ₂ O ₂ , which
is measured by
suppressed IC | 0.8 μg/m³ - | | | Filter pack method (NaOH, IC) | Integrated | Active | Air is drawn through a
NaOH-impregnated
filter | A pump (14 L/min), filter pack | SO ₄ ²⁻ is extracted with
DI water and the
extract analyzed by IC | 0.08 μg/m ³ - | | | Sulfation measurement with lead dioxide | Integrated | Passive | Air is diffused onto a
glass fiber filter coated
with lead dioxide
(sulfation plate) | Platic petri dish (badge
typed), a glass fiber
filter coated with lead
dioxide | Turbidometric barium
sulfate procedure -
turbidity is measured
by spectrophotometry | N/A | | | Permeation, spectrophotometry | Integrated | Passive | Diffusion onto a permeation device (Na ₂ HgCl ₄) | Silicone membrane
(Na ₂ HgCl ₄ soln), 41
mm OD tube, rubber
stopper, and 1 mm OD
capillary | formaldehyde solutions
> absorbance at 575
nm (Wet-Gaeke
procedure) | N/A | | | Permeation, ion-
exchange
chromatography | Integrated | Passive | Diffusion onto a permeation device (K ₂ CO ₃) | 2 * Whatman 41
cellulose filters
impregnated with
K ₂ CO ₃ /glycerol soln | Determined as SO ₄ ²⁻ by ion-exchange chromagraphy | 2 μg/m ³ (1 month) | A-6 Appendix A. Methods for Measuring Particles | Table A-1. | Summary of | of Collection N | Methods For | Gaseous Po | llutants and F | Particulates in A | Air (continued) | |------------|------------|-----------------|-------------|------------|----------------|-------------------|-----------------| | | | | | | | | | | Contaminant | Method Type | Type of
Measurement | Sampler
Tyoe | Collection Method | Sampling Device | Analytical Method | Range of
Quantification
(or detection) | |-------------|--|------------------------|-----------------|--|--|--|--| | | NaHCO ₃ + Na ₂ CO ₃ | Integrated | Passive | Air is absorbed into the liquid media | Badge type - liquid
media (NaHCO ₃ +
Na ₂ CO ₃) is contained in
a well of a sampler | Trapped SO ₂ is converted by H ₂ O ₂ to SO ₄ ²⁻ , which is analyzed by IC-conductivity detector | N/A | | | TEA, IC | Integrated | Passive | Diffusion onto a TEA-
coated filter | A badge type (25 mm * 10 mm), Whatman 1
Chr filter paper (or two SS screens impregnated with TEA) | Absorbed SO ₂ is
converted by H ₂ O ₂ to
SO ₄ ²⁻ , which is
analyzed by IC | 0.7 µg/m ³ (1 month),
21 µg/m ³ (24 hr) - | | | Low dose diffusive
sampler (NaOH, IC) | Integrated | Passive | Diffusion onto a filter coated with NaOH | A badge containing a
NaOH-impregnated
Teflon membrane filter | Extracted SO ₄ ²⁻ is measured by IC | 0.2 μg/m ³ (1 month) | Table A-1. Summary of Collection Methods For Gaseous Pollutants and Particulates in Air (continued) | Contaminant | Method Type | Type of
Measurement | Sampler
Tyoe | Collection Method | Sampling Device | Analytical Method | Range of
Quantification
(or detection) | |--------------------------------------|---|------------------------|-----------------|--
---|---|--| | PM ₁₀ / PM _{2.5} | Gravimetric methods - exchangeable filters | Integrated | Active | An air pump draws
ambient air at a
constant flow rate into
an inlet | particulate matter is
separated into size
fractions and then
collected on a filter | Net mass gain is
divided by the total
volume of air filtered
> PM conc. In µg/m ³ | | | | Beta Attenuator
Methods | Continuous | Active | Air is continuously
drawn and particles are
deposited on a filter
tape | An air pump, a filter tape | Beta particles are
attenuated when they
pass through particulate
deposits, which is a
measure of the mass on
the filter | $\sim 2 \mu g/m^3 (1 \text{ hr})$ - | | | Tapered Element
Oscillating
Microbalance (TEOM)
Methods | Continuous | Active | Air is drawn through a
tapered glass element
with a filter attached | PM ₁₀ inlet, flow splitter, an air pump | The resonance
frequency of the hollow
glass element decreases
as mass accumulates on
the filter, directly
measuring mass | $\sim 5 \mu g/m^3 (5 min)$ - | | F N | Real-Time Total
Ambient Mass Sampler
(RAMS) | Continuous | Active | Air is drawn through
the system | Three TEA-coated
annular denuders, two
Nafion dryer, a BOSS
carbon denuder | Measure mass
concentration
(including volatilized
species) using a
combination of TEOM
principles with
diffusion technology | $\sim 5 \mu g/m^3 (1 \text{ hr})$ - | | | Continuous Ambient
Mass Monitor System
(CAMMS) | Continuous | Active | Air is drawn through
the filter | An air pump, a filter tape | A highly sensitive
pressure transducer
measures the
differential pressure
between measurement
path and reference path | $\sim 2~\mu g/m^3~(1~hr)$ - | | | Piezoelectric
Microbalance | Continuous | Active | Particles are deposited
by inertial impaction or
electrostatic
precipitation on the
surface of a
piezoelectric quartz
crystal disk | The natural resonant frequency of the crystal decreases as particle mass accumulates | | 10 μg/m ³ (1 min) - | | | Personal
Microenvironmental
Aerosol Speciation
Sampler (PMASS) | Integrated | Active | Air passes through a
sampler using a
personal pump | Cyclone inlet, Denuder,
Filter holder | Net mass gain is divided by the total volume of air filtered> PM conc. In µg/m³ | Continua | \-\X Appendix A. Methods for Measuring Particles Table A-1. Summary of Collection Methods For Gaseous Pollutants and Particulates in Air (continued) | Contaminant | Method Type | Type of
Measurement | Sampler
Tyoe | Collection Method | Sampling Device | Analytical Method | Range of
Quantification
(or detection) | |-------------|--|------------------------|-----------------|--|--|---|--| | | ChemPass Personal
Sampling System | Integrated | Active | Air passes through a
sampler using a
personal pump | ChemPass Multi (or
Single)-Component
Sampling System (up
to 4 filters + NO ₂ , SO ₂
and O ₃) | Net mass gain is
divided by the total
volume of air filtered
> PM conc. In µg/m³;
Chemical speciation | | | | Triplex
CycloneSCC1.062
Triplex Cyclone | Integrated | Active | Air passes through a
sampler using a
personal pump | A sampling pump, cyclone | Net mass gain is
divided by the total
volume of air filtered
> PM conc. In µg/m ³ | | | | GK2.05 (KTL)/GK2.05
SH (KTL) Cyclone | Integrated | Active | Air passes through a
sampler using a
personal pump | A sampling pump, cyclone | Net mass gain is
divided by the total
volume of air filtered
> PM conc. In µg/m ³ | | | | Personal
Microenvironmental
Monitor (PEM) | Integrated | Active | Air passes through a
sampler using a
personal pump | An air pump, a monitor | Net mass gain is
divided by the total
volume of air filtered
> PM conc. In µg/m ³ | | | | URG's Personal
Sampler for
Particulates/Pesticides | Integrated | Active | Air passes through a
sampler using a
personal pump | A sampling pump, a size-selective impactor inlet and filter pack, (PUF cartridge) | Net mass gain is
divided by the total
volume of air filtered
> PM conc. In µg/m³ | | Table A-1. Summary of Collection Methods For Gaseous Pollutants and Particulates in Air (continued) | Contaminant | Location of Sample | Importance of
Route of
Exposure | Importance of Outcome | Lifestage | References | Limitations | Comments | FRM or FEM? | |-------------------------------------|---|---------------------------------------|-----------------------|-----------|--|-------------|----------|--------------------------------| | Carbon monoxide
(CO) | Indoor/
outdoor | | | | Manufacturer's websites
(e.g.,
http://www.monsol.com/Mo
nitoring%20Solutions%204
8C.pdf) | | | Automated Reference
Method | | | Personal | | | | http://www.bis.fm/bis/products/Drager_Pac_III.asp | | | | | | Outdoor | | | | Watson, 1995. J. Air Waste
Manag. Assoc. 45, 29-35. | | | | | | Personal | | | | http://www.msanet.com/day
/17.html | | | | | | Personal/indoo
r/ outdoor | | | | Lee et al., 1992. Environ.
Sci. Technol. 26, 697-702. | | | | | | Personal
(workplace)/in
door/ outdoor | | | | McConnaughey et al., 1985.
Am. Ind. Hyg. Assoc. J. 46,
357-362; Valerio et al.,
1997. Atmos. Environ. 31,
2871-2876. | | | | | Nitrogen dioxide (NO ₂) | Personal | | | | http://www.bis.fm/bis/products/Drager_Pac_III.asp | | | | | | Indoor/
outdoor | | | | http://narsto.esd.ornl.gov/Co
mpendium/methods/no2.sht
ml;
http://www.primeindia.com/
manav/mangt20.html | | | Manual Equivalent
Method | | | Indoor/
outdoor | | | | http://narsto.esd.ornl.gov/Co
mpendium/methods/no2.sht
ml;
http://www.primeindia.com/
manav/mangt20.html | | | Manual Equivalent
Method | | | Outdoor | | | | http://narsto.esd.ornl.gov/Co
mpendium/methods/no2.sht
ml (Fontijn te al., 1970.
Anal. Chem. 42, 575-579). | | | Automated Reference
Method | | | Outdoor | | | | http://www.opsis.se;
http://narsto.esd.ornl.gov/Co
mpendium/methods/no2.sht
ml | | | Automated Equivalent
Method | | | Indoor/
outdoor | | | | http://narsto.esd.ornl.gov/Co
mpendium/methods/no2.sht
ml | | | Manual Equivalent
Method | Table A-1. Summary of Collection Methods For Gaseous Pollutants and Particulates in Air (continued) | Contaminant | Location of Sample | Importance of
Route of
Exposure | Importance of Outcome | Lifestage | References | Limitations | Comments | FRM or FEM? | |-------------------------|---|---------------------------------------|-----------------------|-----------|---|-------------|--|--------------------------------| | | Indoor
(workplace) | | | • | Nitrogen dioxide in
workplace atmosphere (ion
chromatography) - OSHA,
1987 (Revised 1991) | | | | | | Personal/Indoo
r/
outdoor/workp
lace | | | | Palmes et al., 1976. Am.
Ind. Hyg. Assoc. 37, 570-
577; Heal et al., 1999.
Environ. Int'l 25, 3-8. | | Protective cover
recommended for
outdoor sampling | | | | | | | | NIOSH Manual of
Analytical Methods,
Nitrogen Dioxide (Diffusive
sampler) - 6700; Hansen et
al., 2001. J. Environ. Monit.
3, 139-145. | | Short-term to a month; collection efficiency is temperature dependent (<-8°C) | | | | Outdoor | | | | Ferm and Rodhe, 1997. J.
Atmos. Chem. 27, 17-29. | | | | | | Indoor/
outdoor/
personal | | | | Mulik et al., 1989. Anal.
Chem. 61, 187-189. | | | | | | Outdoor/(indo
or) | | | | Tang et al., 1999. Field
Anal. Chem. Technol. 3,
338-345. | | Rain shelter (all
seasons), can be used
for low temp. and high
humidity | | | | (Indoor)/
outdoor | | | | Krochmal and Kalina, 1997.
Atmos. Environ. 31, 3473-3479. | | 1 day - months, also
used for NO ₂
measurement | | | | (Indoor)/ | | | | Yamada et al., 1999. ES&T | | | | | Ozone (O ₃) | Outdoor Outdoor | | | | 33, 4141-4145.
www.epa.gov/ttn/amtic/crite
ria.html | | | Automated Reference
Method | | | Outdoor | | | | www.epa.gov/ttn/amtic/crite
ria.html | | | Automated Equivalent
Method | | | Ambient
(outdoor) | | | | EPA-600/4-79-057 (1979);
EPA-600/4-79-056 (1979);
WMO GAW No. 97 | | | Automated Equivalent
Method | | | Outdoor | | | | http://www.opsis.se;
http://narsto.esd.ornl.gov/Co
mpendium/methods/no2.sht
ml | | | Automated Equivalent
Method | | | Personal | | | | http://www.epa.gov/ttn/amti
c/ord/00212.txt | | | | | | Personal | | | | http://www.osha-slc.gov/dts/sltc/methods/inorganic/id214/id214.html | | | | Table A-1. Summary of Collection Methods For Gaseous Pollutants and Particulates in Air (continued) | Contaminant | Location of Sample | Importance of
Route of
Exposure | Importance of Outcome | Lifestage | References |
Limitations | Comments | FRM or FEM? | |-----------------------------------|--|---------------------------------------|-----------------------|-----------|--|--|---|--------------------------------| | | Outdoor | | | | Hauser and Bradley, 1966.
Anal. Chem. 38, 1529-1532. | Cannot be used below ~16°C | 0.5 L/min, 0.5 to 2 hours | | | | Outdoor | | | | Moon and Hangartner,
1990. J. Air Waste Manag.
Assoc. 40, 357-358. | | 1 week | | | | Outdoor | | | | Cox and Malcolm, 1999.
Water Air Soil Pollution
116, 339-344. | | 2-3 weeks for sampling | | | | Outdoor | | | | Grosjean and Hisham, 1992.
J. Air Waste Manag. 42,
169-173 | NO ₂ and PAN would be potentials interferents | | | | | | | | | Grosjean et al., 1995.
Environ. Pollution 88, 267-
273 | | 4-15 days | | | | | | | | Bytnerowics et al., 1993.
Environ. Pollution 80, 301-305. | | | | | | Personal,
outdoor | | | | Koutrakis et al., 1993. Anal.
Chem. 65, 209-214. | | No change in collection rate due to temperature variation | | | | Personal,
outdoor | | | | Brauer and Brook, 1995. J.
Air Waste Manag. Assoc.
45, 529-533. | | | | | | Outdoor | | | | Tang and Lau, 2000.
Environ. Monitoring and
Assess. 65, 129-137. | | High accuracy
(1% <re<14%< td=""><td></td></re<14%<> | | | | Outdoor | | | | Kano and Yanagisawa,
1992. Environ. Sci.
Technol. 26, 744-749. | Interferences from NO ₂ | | | | | Outdoor (forest
or agricultural
areas) | | | | Serrano et al., 1993. Atmos.
Environ. 27A, 431-442. | | | | | | Personal | | | | http://www.bis.fm/bis/products/Drager_Pac_III.asp | | | | | Sulfur dioxide (SO ₂) | Indoor,
outdoor | | | | 40 CFR part 50, Appendix A | | (30 min - 24 hr) | Manual Reference
Method | | | Ambient | | | | USEPA, List of Designated
Reference and Equivalent
Methods, Oct. 9, 2003
(www.epa.gov//ttn/amtic/cri
teria.html) | | | Automated Equivalent
Method | | | Outdoor | | | | www.epa.gov/ttn/amtic/crite
ria.html | | | Automated Equivalent
Method | Table A-1. Summary of Collection Methods For Gaseous Pollutants and Particulates in Air (continued) | Contaminant | Location of Sample | Importance of Route of Exposure | Importance of Outcome | Lifestage | References | Limitations | Comments | FRM or FEM? | |--------------------|----------------------------|---------------------------------|-----------------------|-----------|--|---|---|--------------------------------| | | Outdoor | | | | Ferm and Svanberg, 1998.
Atmos. Environ. 32, 1377-1381. | | | | | | Outdoor | | | | Ferm and Svanberg, 1998.
Atmos. Environ. 32, 1377-1381. | | | | | | Outdoor | | | | Huey, 1968. J. Air Pollut.
Control Assoc. 18, 610-611. | Analysis is time-
consuming | 30 days | | | | Outdoor | | | | Reisner and West, 1973.
ES&T 7, 526-532, | No significant errors
from interferents (H ₂ S,
NO ₂ , O ₃) | 6 hr - 7 days | | | | Outdoor | | | | Orr et al., 1987. Atmos.
Environ. 21, 1473-1475. | | | | | | Indoor
(workplace) | | | | Hallberg and Rudling, 1998.
Ann. Occup. Hyg. 33, 61-68. | | | | | | Outdoor | | | | Krochmal and Kalina, 1997.
Atmos. Environ. 31, 3473-3479. | | 1 day - months, also
used for NO ₂
measurement | | | | Outdoor | | | | Carmichael et al., 1995.
Water Air Soil Pollution 85,
2289-2294. | | 1 month | | | | | | | | Ferm and Svanberg, 1998.
Atmos. Environ. 32, 1377-1381. | | | | | | | | | | Ayers et al., 1998. Atmos. Environ. 32, 3578-3592. | | | | | $PM_{10}/PM_{2.5}$ | Ambient | | | | http://narsto.ornl.gov/Comp
endium.methods/pm.shtml | | $PM_{10}/PM_{2.5}$ | Manual Reference
Method | | | Ambient | | | | McMurry, 2000. Atmos.
Environ. 34, 1959-1999. | | $PM_{10}/PM_{2.5}$ | Automated Equivalent
Method | | | Ambient | | | | McMurry, 2000. Atmos.
Environ. 34, 1959-1999. | | PM ₁₀ /PM _{2.5} | Automated Equivalent
Method | | | Ambient | | | | McMurry, 2000. Atmos.
Environ. 34, 1959-1999. | | PM ₁₀ /PM _{2.5} | | | | Ambient | | | | McMurry, 2000. Atmos.
Environ. 34, 1959-1999. | | PM ₁₀ /PM _{2.5} | | | | Ambient | | | | McMurry, 2000. Atmos.
Environ. 34, 1959-1999. | | PM ₁₀ /PM _{2.10} | | | | Personal/Micro environment | | | | MSP Corporation | | 4.0 L/min, 37 mm, 300 g, two channels, PM _{2.5} | | | | Personal | | | | Rupprecht & Patashnick Co, Inc. | | 0.8, 1.8 or 4.0 L/min, 37 mm, PM ₁₀ /PM _{2.5} | | Α- Appendix A. Methods for Measuring Particles Table A-1. Summary of Collection Methods For Gaseous Pollutants and Particulates in Air (continued) | Contaminant | Location of Sample | Importance of
Route of
Exposure | Importance of Outcome | Lifestage | References | Limitations | Comments | FRM or FEM? | |-------------|--------------------|---------------------------------------|-----------------------|-----------|------------|-------------|--|-------------| | | Personal/Ambi | | | | BGI, Inc. | | 37 mm, 1.05 to 3.5 | | | | ent | | | | | | L/min, PM _{2.5} | | | | Personal/Ambi | | | | BGI, Inc. | | 37 mm, 4.0 L/min, | | | | ent | | | | | | PM _{2.5} | | | | Personal/Ambi | | | | SKC, Inc. | | 37 mm, 2, 4 or 10 | | | | ent (Indoor) | | | | | | L/min, PM ₁₀ /PM _{2.5} | | | | Personal/(Amb | | | | URG | | 25 mm, 4 L/min, | | | | ient) | | | | | | $PM_{10}/PM_{2.5}$ | | Table A-2. Summary of Collection Methods for Metals in Air | Entry | Contaminant | Size Cut | Sampler type | Measurement type | Sampler
Type | Collection media | Sampling Device and sampling duration | Analytical Method | |-------|-----------------------|--|----------------------|------------------|-----------------|--|---|--| | 1 | Total Metals | TSP | Filter based sampler | Integrated | Active | Quartz filter | High-Vol sampler at 68 m ³ /h for 24 h | acid digestion for metals
analysis with ICP/AES
and/or ICP/MS | | 2 | Total Metals | TSP | Filter based sampler | Integrated | Active | same as above | same as above | X-ray absorption fine
structure (XAFS) spec | | 3 | Total Metals | TSP | Filter based sampler | Integrated | Active | Whatman EPM 2000
borosilicate glass
microfiber filter | General Metals Works
BM 2200X portable high-
vol sampler, 631-3481 m ³
of air over 48 hrs | Atomic Absorption Spec
(AAS) | | 4 | Total Metals | TSP | Filter based sampler | Integrated | Active | Whatman-41 filter (12.5 cm diameter) | Gamma Irradiation
Center of AEOI sampler
@ 5 m³/h | Instrumental neutron activation analysis (INAA) | | 5 | Total Metals | TSP | Filter based sampler | Integrated | Active | 25-mm filters: Glass
fiber, 1.0 um, PVC, 5.0
um, or Teflon w/ PMP
support, 3.0 um | SKC abrasive blasting
sampler for heavy metals
@ 2-10 lpm (4 lpm
recomm) for 8 h | ICP used for 25 metals,
visual absorption spe (VAS)
used for hexavalent Cr | | 6 | Total Metals | TSP | Biomonitor | Integrated | Passive | plants | T. capillaris | AAS | | 7 | Total Metals | TSP | Filter based sampler | Integrated | Active | 8"x10" quartz filter | High-vol sampler @ 40-
60 cfm for 24 h | ICP/MS | | 8 | Нд | TSP | Filter based sampler | Integrated | Active | 6-mm quartz fiber filter
disc supported by Ni-
screen | AESminiSamplR At 3.5-5.5 lpm | Hg thermally desorbed at 900 C onto a gold trap which is desorbed at 550 C and detected on atomic fluorescence spec. | | 9 | Pb | PM ₁₀ | Immunoassay | Integrated | Active | fiberglass filter | N/A | Filter extracted nitric acid
and HCl, pipeting into assay
reagents, and polarization
was measured by FPIA | | 10 | As, Pb, Cd, Cr | PM ₁₀ | Filter based sampler | Integrated | Active | Teflon | ? | As by hydride generation
atomic fluorescence (HGAF),
Pb, Cd, and Cr by GFAAS | | 11 | Pb, As, Cd, Cr, Ni | PM ₁₀ | Filter based sampler | Integrated | Active | Teflon | Air pumped at 4 lpm for 72 h (O'Rourke et al. 1999) or high-vol sampler (Libowitz et al. 1995) | XRF, ICP-AES (or HG-AAS). | | 12 | Total Metals, esp. Pb | PM _c and
PM _{2.5} | Filter based sampler | Integrated | Active | ? | "Gent"-type stacked filter sampler @ 16 lpm | PIXE and SEM and ED X-
ray microanalyzer (EDX) for
individual particle | | 13 | Total metals | PM _{2.5} | Filter based sampler | Integrated | Active | 25-MM Teflon filter | IMPROVE, cyclone, @ 22.7 lpm for 24 h | XRF (enhanced sensitivity), PESA | Appendix A. Methods for Measuring Particles Table A-2. Summary of Collection Methods for Metals in Air (continued) | Entry | Contaminant | Size Cut | Sampler type | Measurement type | Sampler
Type | Collection media | Sampling Device and sampling duration | Analytical Method | |-------|----------------|--|----------------------|------------------|-----------------|-----------------------|---|-------------------------------------| | 14 | Total metals | PM _{2.5} | Filter based sampler | Integrated | Active | 46.2-mm Teflon filter | STN, cyclone or Wins
impactor (16.7 lpm
for
Teflon filter pack) for 24
h | XRF (enhanced sensitivity),
PESA | | 15 | Total metals | PM _{2.5} , PM ₁ ,
PM ₁₀ , or TSP | Filter based sampler | Integrated | Active | Partisol filter | Partisol air sampler 2000
@ 16.7 l/min for 24 h | ICP or AA | | 16 | Total metals | PM _{2.5} , PM ₁ ,
PM ₁₀ , or TSP | Filter based sampler | Integrated | Active | Series 1400a filters | TEOM Series 1400a
monitor @ 3 lpm (24 h to
14 days) | ICP or AA | | 17 | Mn, Al, Ca, Mg | PM _{2.5} and PM ₁₀ | Filter based sampler | Integrated | Active | N/A | MSP sampler, 3 min on
and 1 min off over 3 days
@ 2 lpm | Neutron activation | | 18 | Mn, Al, Ca, Mg | PM _{2.5} and
PM ₁₀ | Filter based sampler | Integrated | Active | N/A | Graseby-Anderson
dichotomous sampler
with 4 D-cell batteries,
2.4 m³ air collected over
24 h for coarse and 21.6
m³ for fine PM. | Neutron activation | Table A-2. Summary of Collection Methods for Metals in Air (continued) | Entry | Range of
Quantification or
detection | Sampling
Location | Importance of inhalation exposure | Importance to outdome | Lifestage | Reference | Limitations | Comments | |-------|---|------------------------------|-----------------------------------|-----------------------|-----------|--|--|---| | 1 | N/A, rough
recoveries: 74-116% | Outdoor | | | | Pineiro-Iglesias, M. et al. A
new method for the
simultaneous determination
of PAH and metals in
samples of atmostpheric
particulate matter. Atmos.
Environ. 37 (2003) 4171-
4175 | | PAH and metals can be analyzed simultaneously | | 2 | N/A | Outdoor | | | | Pineiro-Iglesias et al. 2003.
Huggins, FE, et al.
Speciation of elements in
NIST particulate matter
SRMs 1648 and 1650. J.
Hazard. Mater. 2000, 74, 1-
23. | | XAFS is an element-
specific structural analysis,
useful for trace element
speciation and forms of
occurrence in chemically
and structurally complex
materials. | | 3 | Detection limits
(ng/ml). Cd:12,
Zn:20, Cu:22,
Mn:41, Cr:55,
Ni:65, Fe:68, Pb:81. | Outdoor | | | | Bilos, C. et al. Sources, distribution and variability of airborne trace metals in La Plata City area, Argentina. Environ. Pollution 111 (2001) 149-158. Kim, KH. Environ. International 29(2003) 901-906. Pilger and Broder. Determintation of metals on airborne particulates by AAS. IARC Schi Publ. 1993 (109) 328-41. | | | | 4 | N/A | Outdoor | | | | Hadad, K. et al. Impact of
different pollutant sources
on Shiraz air pollution
using SPM elemental
analysis. Environ.
International 29 (2003) 39-
43. | INAA is useful for Mn, V, Fe, Zn, Cr, Br, Ca, and Sc (Pb is impractical). AAS was used for Cu, Al, Mn, and Pb. | AAS was used to complement the INAA method. Whatman-41 filter produces low background metals and does not interfer INAA. | | 5 | N/A | Outdoor, Indoor,
Personal | | | | Aizenberg et al. Metal exposures among abrasive blasting workers at 4 U.S. Air Force facilities. Appl. Occ. Environ. Hyg. 2000. 15 (2000) 766-772. | VAS can not detect Cr(II)
and (III) due to chemical
interference from iron and
some other metals. | This sampler withstands mechanical stress, prevents collecting very large PM, and prevents filter overloading and particle rebounding. | Table A-2. Summary of Collection Methods for Metals in Air (continued) | Entry | Range of
Quantification or
detection | Sampling
Location | Importance of
inhalation
exposure | Importance to outdome | Lifestage | Reference | Limitations | Comments | |-------|--|------------------------------|---|-----------------------|-----------|--|--|--| | 6 | N/A | Outdoor | low | | | Pignata et al. Atomspheric quality and distribution of heavy metals in Argentina employing Tillandsia capillaris as a biomonitor. Enviorn. Pollut. 2002, 120(1): 59-68 | These plants are not prevalent in U.S. | Used for detecting Co, Cu, Fe, Ni, Mn, Pb, and Zn. | | 7 | N/A | Outdoor | | | | Leston, A.R. Air Toxics
methodology issues,
EPA/NESCAUM
workshop, Oct 8-9, 2003,
Las Vegas, NV
US EPA, IO Compendium
of Methods for the
Determination of Inorganic
Compounds in Ambient
Air, EPA/625/R-96/01a,
July 1999 | digestion problem (poor
recovery)? Bias in mass
determination? | This methodology was used
by the Air Toxics "Pilot
Cities" including Seattle | | 8 | in pg/m ³ | Outdoor, Indoor,
Personal | | | | of the AESmniSamplR
technique for sampling and
analysis of total particulate
mercury in the atmostphere.
The science of the Total
Environ. 304 (2003) 115-
125. | | Sample analysis time is less
than 10 min. This method
was designed for ecological
monitoring. | | 9 | N/A (probably low ppm) | analytical alternative | | | | Johnson et al. Lead analysis
by anti-chelate fluorescence
polarization immunoassay.
ES&T, 2002, 36, 1042-
1057. | | R ² between this method and AAS is between 0.96 and 0.93. | | 10 | MDL: As: <1
ng/m³, Pb: 10 ng/m³ | Outdoor, Indoor,
Personal | High | High | | Pellizzari et al. An assess of
the data quality for
NHEXAS-part I: exposure
to metals and VOC in
Region 5. JEAEE (2001)
11, 120-154. | | | Appendix A. Methods for Measuring Particles Table A-2. Summary of Collection Methods for Metals in Air (continued) | Entry | Range of
Quantification or
detection | Sampling
Location | Importance of inhalation exposure | Importance to outdome | Lifestage | Reference | Limitations | Comments | |-------|--|------------------------------|-----------------------------------|-----------------------|-----------|---|-----------------------------------|----------| | 11 | MDL (ng/m3): Pb:
661-35,886 As: 1.8-
14.3, Cd: 37-444,
Cr: 59-3179, Ni: 85-
1778 | Outdoor, Indoor,
Personal | | | | Lebowitz et al. Population-
based exposure
measurements in Arizona: a
phase I field study in
support of the NHEXAS.
JEAEE (1995) 5, 297-325.
O'Rourke et al.
Evaluations of primary
results from NHEXAS
Arizona: distributions and
preliminary exposures.
JEAEE (1999) 9, 435-445. | | | | 12 | N/A | Outdoor | | | | Biswas et al. Impact of unleaded gasoline introduction on the concentration of lead in the air of Dhaka, Bangladesh. JAWMA (2003) 53:1355-1362. | | | | 13 | ? | Outdoor | | | | Solomon et al. Air Toxics
methodology issues,
EPA/NESCAUM
workshop, Oct 8-9, 2003,
Las Vegas, NV | | | | 14 | ? | Outdoor | | | | Solomon et al. Air Toxics
methodology issues,
EPA/NESCAUM
workshop, Oct 8-9, 2003,
Las Vegas, NV | LOD is not sufficiently sensitive | | | 15 | ICP (ng/m³): Pb:
104.1 ng/m3 Cd:
10.4 Ni: 62.5 As:
20.8 AA (ng/m³):
Pb: 7.5, Cd: 0.8, Ni:
20.8, As: 10.4 | Outdoor | | | | Rupprecht & Patashnick
Co., Inc.
http://www.rpco.com/produ
cts/ambprod/amb2000/meta
ls.htm (viewed on 1/8/2004) | | | | 16 | Assuming 24 h. AA:
Pb: 41.7, Cd: 4.6,
Ni: 115.7, As: 57.9.
ICP: Pb: 578.7, Cd:
57.9, Ni: 347.2, As:
115.7 | Outdoor | | | | Rupprecht & Patashnick
Co., Inc.
http://rpco.com/products/a
mbprod/amb1400/metals.ht
m (viewed on 1/8/2004) | | | A-15 Appendix A. Methods for Measuring Particles Table A-2. Summary of Collection Methods for Metals in Air (continued) | Entry | Range of
Quantification or
detection | Sampling
Location | Importance of inhalation exposure | Importance to outdome | Lifestage | Reference | Limitations | Comments | |-------|---|------------------------------|-----------------------------------|-----------------------|-----------|---|-------------|----------| | 17 | Detection limits
(ng/m³): Al: 27, Ca:
96, Mg: 93, Mn:
0.170 | Outdoor, Indoor,
Personal | High | High | | Pellizzari et al. Particulate
matter and manganese
exposures in Indianapolis,
Indiana. JEAEE (2001) 11,
423-440. | | | | 18 | For V=6.48 m ³ ,
Instrumental DL
(ng/m ³): Mn: 0.73-
0.84. DL based on
blanks. Mn in PM ₁₀ :
5.5. Mn in
PM _{2.5} :1.83 | Outdoor | High | High
 | Pellizzari et al. Particulate
matter and manganese
exposures in Toronto,
Canada. Atmos. Environ.
33 (1999) 721-734. | | | Table A-3. Summary of Collection Methods for Volatile Organics in Air | Contaminant | Method Type | Type of
Measure-ment | Sample
Type | Collection Method | Sampling Device | Analytical Method | Range of
Quantification | Location of Sample | |----------------------------------|---|----------------------------|----------------|--|--|--|--|---| | Volatile
Organic
Compounds | Passivated canister
sampling (EPA ref.
methods TO-12,
TO-14 and TO-15) | Integrated | Active | Whole air. Drawn into a stainless steel canister with passivated walls; evacuated or pressurized. Canisters available in volumes from 400ml (MiniVac) to +6 litters | Passivated stainless
steel canister with flow
controls; pressurized or
evacuated. | Direct injection. Analyses by GC with FID/ECD or GC/MS after direct cryogenic trapping (non-polar componds) or on a multi-sorbent/second trap (polar and non- polar compounds). | 0.01ppb to < 1 ppm
level (with injection
dilution) MDL varies by
compound | Indoor/ outdoor/
personal (with MiniVac) | | | VOCs condense as they flow thorugh a trap cooled to \approx -50 C. | Integrated | Active | Whole air is drawn at a constant rate thorugh a cryognically cooled trap to condense VOCs. EPA TO-3. | Metal trap immersed in liquid oxygen or argon at -50C | Thermal desorption followed by GC/FID/ECD | 0.1-200ppb | indoor/ outdoor | | | Granular sorbent
material in a tube
or cartridge adsorbs
VOCs. | Integrated or intermittent | Active | Sorbent. Air is drawn through a single sorbent bed. Effectiveness of collection is sorbent and VOC-class specific. Sorbents include: 1) Polymers: TENAX GC [EPA TO-1] or TA; XAD; 2) granular carbons: activated charcoal; various types of graphitized carbons; carbon molecular sieve (EPA TO-2) | Cartridge or tube filled
with single sorbent,
pump and flow controls | Thermal desorption
followed by
GC/FID/ECD ot
GC/MS | MDL varies by compound and is strongly dependent of sorbent background. | Indoor/ outdoor/
personal | | | Granular sorbent
materials in a tube
or cartridge adsorb
VOCs. | Integrated or intermittent | Active | Air is drawn at a constatnt rate through a bed of multiple sorbents separated by foam plugs. Utilzes the optimal sorbent material for each VOC class. Analysis by GC/MS following thermal desorption. | Cartridge or tube filled
with separate beds of
different sorbents | Thermal desorption
followed by GC/MS
(EPA TO-17) or
GC/FID/ECD | MDL varies by compound and is strongly dependent of sorbent background. | Indoor/ outdoor/
personal | | | VOCs diffuse as a function of concentration gradient and are adsorbed on a sorbent. | Integrated | Passive | Compounds diffuse
passively onto a sorbent
bed or sorbent pad | Diffusion badge or diffusion tube. | Thermally desorbed or solvent extracted depending on the type of sorbent: graphitic carbons and polymers are thermally desorbed; activated charcoal is solvent-extracted. Thermal desorption results in lower detectionvalues because the sample is not diluted prior to analysis. | ppb to ppm levels | Personal/indoor/
outdoor | Table A-3. Summary of Collection Methods for Volatile Organics in Air (continued) | Contaminant | Method Type | Type of
Measure-ment | Sample
Type | Collection Method | Sampling Device | Analytical Method | Range of
Quantification | Location of Sample | |-----------------------|---|-------------------------|----------------|--|--|---|----------------------------|------------------------------| | Carbonyl
compounds | Compounds with a carbonyl moiety such as aldehydes and ketones react with DNPH in an impinger solution to produce compound-specifc derivatives amenable to separations by HPLC and detection by UV/VIS. | Integrated | Active | Air drawn thorugh an
impinger containind a
solution of DNPH | Inpinger with DNPH solution | Analysis of solution by
HPLC with UV/VIS | 1-50ppbv | Indoor/ outdoor | | | Compounds such as aldehydes and ketones react with DNPH coated on a polymeric support (typically C18) contained within a tube or cartridge. | Integrated | Active | Air passes through a tube or cartridge filled with a polymeric support coated with DNPH. | Cartridges or tubes
filled with DNPH-
coated C18, KI trap (to
remove Ozone
interferences), pumps
and flow controls. | Extraction with acetonitrile followed by HPLC with UV/VIS analysis | 0.5 to 100 ppbv | Indoor/ outdoor/
personal | | | Compounds with a
carbonyl moiety
such as aldehydes
and ketones react
with DNPH coated
on a fiber or filter
support glass
support | Integrated | Passive | Carbonyl compounds
diffuse onto the coated
support and react to
produce DNPH
derivatives | Commercially available
badge (e.g; GMD
badge) | Extraction with acetonitrile followed by HPLC with UV/VIS analysis | 0.05 - 100 ppb | Indoor/ outdoor/
personal | | | Compounds with a carbonyl moiety such as aldehydes and ketones react with DNSH coated on a C18 support | Integrated | Passive | Carbonyl compounds diffuse onto a DNSH-coated support placed inside a cartridge. Compound-specific derivatives of DNSH-carbonyls fluoresce. Fluorescence is a more sensitive method of detection than UV/VIS | Cartridge not
commercially available
but can be easily
prepared from
commercially available
materials. | Extraction with acetonitrile and analysis by HPLC with fluorescence detector. | 0.01 - 100 ppb | Indoor/ outdoor/
personal | | Nicotine | Airborne nicotine
diffuses to a filter
coated with sodium
bisulfate | Integrated | Passive | Nicotine diffuses to a
fiber glass or quartz
filter coated in sodium
bisulfate that is held in a
cassette. | Cartridge not
commercially available
but can be easily
prepared from
commercially available
materials. | HPLC with UV/VIS detection. | 0.01 - 100 ppb | Indoor | 1-22 Appendix A. Methods for Measuring Particles Table A-3. Summary of Collection Methods for Volatile Organics in Air (continued) | | | | | ` , | | | | | |-------------|--|-------------------------|----------------|--|---|-------------------|----------------------------|--------------------| | Contaminant | Method Type | Type of
Measure-ment | Sample
Type | Collection Method | Sampling Device | Analytical Method | Range of
Quantification | Location of Sample | | | Air is drawn
through a filter
followed by a
sorbent bed to
collect particle-
bound and gas
phase PAHs. | Integrated | | prefired glass fiber or
teflon filter with a PUFF
or XAD-2 sorbent | commercially available
an can be fitted to either
hi-vol or
microenvironmental
samplers. Allows for | | 0.5 - 500 ug/m3 | Indoor/ outdoor | Appendix A. Methods for Measuring Particles Table A-3. Summary of Collection Methods for Volatile Organics in Air (continued) | Contaminant | Importance
of Route of
Exposure | Importance to
Outcome | Lifestage | References | Limitations | Comments | FRM or FEM? | |----------------------------------|---------------------------------------|--------------------------------------|---|---
--|---|--------------------------------------| | Volatile
Organic
Compounds | High | Medium (depending on compound class) | ≥ 18 (for personal monitoring); all ages for outdoor monitoring; all ages for indoor monitoring with precautions | http://www.epa.gov/ttn/am
tic/ord/00313.wpd;
http://www.epa.gov/ttn/am
tic/files/ambient/airtox/to-
15r.pdf;
http://www.epa.gov/ttn/am
tic/ord/00322.wpd;
http://www.epa.gov/ttn/am
tic/files/ambient/airtox/to-
14ar.pdf;http://www.epa.g
ov/ttn/amtic/files/ambient/
airtox/tocomp99.pdf | EPA reference method. Requires careful clean up to avoid contamination. Questionable for somer polar compounds. High participant burden when used as personal sampler. Not suitable for young children. | Canister methods have
been extensively
evaluated by EPA and the
performance and QA/QC
paremeters are relatively
well established. Direct
injection with or without
cryogenic traping avoids
dilution of sample. High
cost. | Automated Reference
Method | | | High | Medium (depending on compound class) | Not suitable for personal monitoring. Questionable for indoor use. | http://www.epa.gov/ttn/am
tic/files/ambient/airtox/to-
3.pdf | Avoids limitations of
sorbent sampling. Very
cumbursome for sampling
because it requires
supervision. | There is experience for outdoor sampling. EPA SOPs and QA/QC are available. High cost. | Not automated.
Equivalent method. | | | High | Medium (depending on compound class) | ≥ 12 (for personal monitoring); all ages for outdoor monitoring; all ages for indoor monitoring with precautions. Less cumbersome than canister sampling. | http://www.epa.gov/ttn/am
tic/files/ambient/airtox/to-
1.pdf;
http://www.epa.gov/ttn/am
tic/files/ambient/airtox/toc
omp99.pdf | Different sorbents are appropriate for different classes of compounds; thermal desorption avoids sample dilution; sorbent can be reused following thermal cleaning but background of certain compounds could increase because of decomposition in the case of polymeric sorbents; certain sorbents are specially affected by high humidity; breakthrough can be a problem. High participant burden because of the need for personal sampling pump. | There is extensive experience with the use of some sorbents for indoor, outdoor and personal monitoring. EPA SOPs and QA/QC are available for equivalent methods. | Equivalent Method | Table A-3. Summary of Collection Methods for Volatile Organics in Air (continued) | Contaminant | Importance of Route of Exposure | Importance to
Outcome | Lifestage | References | Limitations | Comments | FRM or FEM? | |-----------------------|---------------------------------|--------------------------------------|--|---|---|--|---| | | High | Medium (depending on compound class) | ≥ 12 (for personal monitoring); all ages for outdoor monitoring; all ages for indoor monitoring with precautions. Less cumbersome than canister sampling. | http://www.epa.gov/ttn/am
tic/files/ambient/airtox/to-
17r.pdf;
http://www.epa.gov/ttn/am
tic/files/ambient/airtox/toc
omp99.pdf | A combination of sorbents
allows for simultaneous
sampling of more that one
class of compound.
Mutliple sorbent tubes can
be purchased
commercially or made for
particular applications. | There is extensive experience with the use of some sorbents for indoor, outdoor and personal monitoring. EPA SOPs and QA/QC are available (EPA TO-17). | Equivalent Method | | | High | Medium (depending on compound class) | ≥ 6 (for personal monitoring); all ages for outdoor monitoring; all ages for indoor monitoring with precautions. Far more acceptable to individuals than active sampling because of the low partipant burden. Lower in cost than active methods. | Chung et al., 1999 a, b. | Sampling rates comparatibly low compared to active sampling. Sorbent limitations similar to active sampling with sorbents. Compound class depends on specific sorbent. Sorbents that require solvent extraction result in dilution of the sample. | Several types of passive
monitors are comercially
available. Some models
use a sorbent bed that can
be replaced with other
sorbents. | Some passive samplers have been used extenssively in exposure studies in the US and Europe. | | Carbonyl
compounds | High | Medium (under investigation) | Because a solution is used, the method is not approapriate for personal monitoring in the general population. Applicable to all ages for outdoor monitoring and with approapriate precautions for indoor monitoring. Not suitable for acrolein. Potential for evaporation of the solution during sampling. | http://www.epa.gov/ttn/am
tic/files/ambient/airtox/toc
omp99.pdf | Significant experience because of the well known reactions. Interferences with oxidizing compounds in air may affect results unless a trap is used to remove compounds such as ozone form the air stream. | Solution is prepared in the laboratory | Not automated.
Equivalent method (EPA
TO-5) | | | High | Medium (under
investigation) | Avoids the use of a solution to capture carbonyl compounds, so it si more appropriate for personal monitoring. Same limitations with respect to acrolein. Active sampler requires a pump, so suitable for ≥ 12. | http://www.epa.gov/ttn/am
tic/files/ambient/airtox/toc
omp99.pdf | Significant experience because of the well known reactions. Interferences with oxidizing compounds in air may affect results unless a KI trap is used to remove compounds such as ozone form the air stream. | Cartridges are
commercially available
but they can be easily
prepared also. | Manual. Equivalent
Method (EPA TO-11A) | A-2: Appendix A. Methods for Measuring Particles Table A-3. Summary of Collection Methods for Volatile Organics in Air (continued) | Contaminant | Importance
of Route of
Exposure | Importance to
Outcome | Lifestage | References | Limitations | Comments | FRM or FEM? | |-------------|---------------------------------------|------------------------------|--|-------------------------------------|---|--|------------------| | | High | Medium (under investigation) | Suitable for outdoor, indoor and personal monitoring ≥ 6 years of age. | Morandi et al, 1998;
Others. | Limitations for acrolein
sampling. High
background levels are a
problem. | Used extensively for
outdoor/indoor/ personal
monitoring in European
studies and in some US
studies. | | | | High | Medium (under investigation) | Suitable for outdoor, indoor and personal monitoring ≥ 6 years of age. Detects acrolein. | Zhang et al, 2000 | This is still a research tool and not fully evaluated | Used in indoor/ outdoor/
personal monitoring
studies in the US. It is
better that the DNPH
methods for acrolein. | | | Nicotine | High | High (ETS indicator) | Suitable for indoor
monitoring. Requires
multiple day exposure. | Hammond and Leaderer,
1987et al, | Research tool. | Used in several studies of impact from ETS in indoor environments. | | | PAHs | High | Medium (under investigation) | Suitable for indoor and
outdoor monitoring when
using
microenvironmental
samplers. There | Turpin et al, 2002 | The lower molecular weight PAHs may not be collected efficiently. Extraction solvent volumes need to be adjusted depending on the colume of the sample. | Method can be used for hi
volume sampling in
ambient air (EPA TO-
13A) | FRM (EPA TO-13A) |